
Understanding High-performance I/O on

BlueGene

Rob Latham

Mathematics and Computer Science Division

Argonne National Laboratory

robl@mcs.anl.gov

mailto:robl@mcs.anl.gov

Computational Science

 Use of computer simulation as a tool for
greater understanding of the real world

– Complements experimentation and theory

 Problems are increasingly computationally
challenging

– Large parallel machines needed to perform
calculations

– Critical to leverage parallelism in all phases

 Data access is a huge challenge

– Using parallelism to obtain performance

– Finding usable, efficient, portable
interfaces

– Understanding and tuning I/O

2

Visualization of entropy in Terascale Supernova
Initiative application. Image from Kwan-Liu Ma’s
visualization team at UC Davis.

IBM Blue Gene/P system at Argonne National
Laboratory.

Blue Gene/P Parallel Storage System

3

Applications, Data Models, and I/O

 Applications have data models
appropriate to domain

– Multidimensional typed arrays, images composed of
scan lines, variable length records

– Headers, attributes on data

 I/O systems have very simple data
models

– Tree-based hierarchy of containers

– Some containers have streams of bytes (files)

– Others hold collections of other containers
(directories or folders)

 Someone has to map from one to the
other!

4

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

I/O for Computational Science

 Additional I/O software provides improved performance and

usability over directly accessing the parallel file system. Reduces

or (ideally) eliminates need for optimization in application codes.

5

I/O Hardware and Software on Blue Gene/P

6

High-level Libraries

and MPI-IO Software

7

I/O Forwarding Software

8

Parallel File System

Software

9

The MPI-IO Interface

10

MPI-IO

 I/O interface specification for use in MPI apps

 Data model is same as POSIX

– Stream of bytes in a file

 Features:

– Collective I/O

– Noncontiguous I/O with MPI datatypes and file views

– Nonblocking I/O

– Fortran bindings (and additional languages)

– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms (more later)

11

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do

– Independent I/O calls do not pass on relationships between I/O on other processes

 Many applications have phases of computation and I/O

– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions are called by all processes participating in I/O

– Allows I/O layers to know more about access as a whole, more opportunities for optimization
in lower software layers, better performance

12

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Contiguous and Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region
 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
 Describing noncontiguous accesses with a single operation passes more knowledge to I/O

system

13

Process 0 Process 0

Noncontiguous
in File

Noncontiguous
in Memory

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block and
skipping ghost cells will result in
noncontiguous I/O.

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access

– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks

– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations

 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

14

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/O Initial State Phase 2: Redistribution

Two-Phase I/O Algorithms

15

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on

Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Impact of Two-Phase I/O Algorithms

 This graph shows the
performance for the S3D
combustion code, writing to a
single file.

 Aligning with lock boundaries
doubles performance over
default “even” algorithm.

 “Group” algorithm similar to
server-aligned algorithm on last
slide.

 Testing on Mercury, an IBM
IA64 system at NCSA, with 54
servers and 512KB stripe size.

16

W.K. Liao and A. Choudhary, “Dynamically Adapting

File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System

Locking Protocols,” SC2008, November, 2008.

The Parallel netCDF

Interface and File Format

17

Thanks to Wei-Keng Liao, Alok
Choudhary, and Kui Gao (NWU) for their
help in the development of PnetCDF.

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from Unidata

– Derived from their source code

 Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

 Features:

– C and Fortran interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

– Non-blocking I/O

 Unrelated to netCDF-4 work

18

Data Layout in netCDF Files

19

Record Variables in netCDF

 Record variables are defined to have a single
“unlimited” dimension

– Convenient when a dimension size is unknown at time
of variable creation

 Record variables are stored after all the other
variables in an interleaved format

– Using more than one in a file is likely to result in poor
performance due to number of noncontiguous
accesses

20

Storing Data in PnetCDF

 Create a dataset (file)
– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or

dataset)
 Switch from define mode to data mode to write

variables
 Store variable data
 Close the dataset

21

Other High-Level I/O libraries

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org

– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/

– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/

– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm

– Targeting geodesic grids as part of GCRM

 PIO:

– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from
master)

 … Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm
https://svn.pnl.gov/gcrm

HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)

 Data Model:

– Hierarchical data organization in single file

– Typed, multidimensional array storage

– Attributes on dataset, data

 Features:

– C, C++, and Fortran interfaces

– Portable data format

– Optional compression (not in parallel I/O mode)

– Data reordering (chunking)

– Noncontiguous I/O (memory and file) with hyperslabs

23

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets

– Datasets hold an array of typed data
• A datatype describes the type (not an MPI datatype)

• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another
dataset

• Also have a datatype and dataspace

• May only be accessed as a unit

24

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

Enabling High-performance I/O with HDF5

/* Set up file access property list w/ parallel I/O access */

plist_id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpio(plist_id, comm, info);

/* Create a new file collectively. */

file_id = H5Fcreate(filename, H5F_ACC_TRUNC,

 H5P_DEFAULT, plist_id);

H5Pclose(plist_id);

/* … omited data decomposition for brevity */

/* Set up data transfer property list w/ collective MPI-IO */

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, H5T_NATIVE_INT,

 memspace, filespace, plist_id, data);

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

25

Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is determined at

write time
 In H5Dwrite:

– Processes communicate to determine file layout
• Process 0 performs metadata updates after write

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• Only if enabled via property list

 Memory hyperslab could have been used to define
noncontiguous region in memory

 In FLASH application, data is kept in native format and
converted at read time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

26

HDF5 Wrap-up

 Tremendous flexibility: 300+ routines

 H5Lite high level routines for common cases

 Tuning via property lists

– “use MPI-IO to access this file”

– “read this data collectively”

 Extensive on-line documentation, tutorials (see “On Line Resources” slide)

 New efforts:

– Journaling: make datasets more robust in face of crashes (Sandia)

– Fast appends (finance motivated)

– Single-writer, Multiple-reader semantics

– Aligning data structures to underlying file system

27

Lightweight Application Characterization

with Darshan

Thanks to Phil Carns (carns@mcs.anl.gov) for
providing background material on Darshan.

28

mailto:carns@mcs.anl.gov

Characterizing Application I/O

How are are applications using the I/O system, and how successful are they at
attaining high performance?

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization
at extreme scale:

 No code changes, small and tunable memory footprint (~2MB default)

 Characterization data aggregated and compressed prior to writing

 Captures:

– Counters for POSIX and MPI-IO operations

– Counters for unaligned, sequential, consecutive, and strided access

– Timing of opens, closes, first and last reads and writes

– Cumulative data read and written

– Histograms of access, stride, datatype, and extent sizes

29

http://www.mcs.anl.gov/darshan/
P. Carns et al, “24/7 Characterization of Petascale I/O Workloads,” IASDS Workshop, held in
conjunction with IEEE Cluster 2009, September 2009.

Darshan Internals

 Characterization centers around per-file
records

– Multiple hash tables allow relating accesses
to one another

– Falls back to aggregate (across files) mode if
file limit is exceeded

 At output time, processes further reduce
output size

– Communicate to combine data on identical
files accessed by all processes

– Independently compress (gzip) remaining
data

• 32K processes writing a shared file
leads to 203 bytes of compressed
output

• 32K processes writing a total of 262,144
files leads to 13.3MB of output

30

Multiple tables allow efficient

location of file records by name,

file descriptor, or MPI File

handle.

The Darshan Approach

 Use PMPI and ld wrappers to intercept I/O functions
– Requires re-linking, but no code modification

– Can be transparently included in mpicc

– Compatible with a variety of compilers

 Record statistics independently at each process
– Compact summary rather than verbatim record

– Independent data for each file

 Collect, compress, and store results at shutdown time
– Aggregate shared file data using custom MPI reduction operator

– Compress remaining data in parallel with zlib

– Write results with collective MPI-IO

– Result is a single gzip-compatible file containing characterization
information

31

Example Statistics (per file)

 Counters:
– POSIX open, read, write, seek, stat, etc.

– MPI-IO nonblocking, collective, independent, etc.

– Unaligned, sequential, consecutive, strided access

– MPI-IO datatypes and hints

 Histograms:
– access, stride, datatype, and extent sizes

 Timestamps:
– open, close, first I/O, last I/O

 Cumulative bytes read and written

 Cumulative time spent in I/O and metadata operations

 Most frequent access sizes and strides

 Darshan records 150 integer or floating point parameters per file,
plus job level information such as command line, execution time,
and number of processes.

 32

sequential

consecutive

strided

1 2 3

1 2 3

1 2 3

Job Summary

33

 Job summary tool shows

characteristics “at a glance”

 MADBench2 example

 Shows time spent in read, write,

and metadata

 Operation counts, access size

histogram, and access pattern

 Early indication of I/O behavior

and where to explore in further

Chombo I/O Benchmark

 Why does the I/O take so long in this case?

 Why isn’t it busy writing data the whole time?

34

 Checkpoint writes from AMR

framework

 Uses HDF5 for I/O

 Code base is complex

 512 processes

 18.24 GB output file

Chombo I/O Benchmark

 Many write operations,
with none over 1 MB in
size

 Most common access size
is 28,800 (occurs 15622
times)

 No MPI datatypes or
collectives

 All processes frequently
seek forward between
writes

35

 Consecutive: 49.25%

 Sequential: 99.98%

 Unaligned in file: 99.99%

 Several recurring regular stride patterns

Two Months of Application I/O on ALCF Blue Gene/P

 After additional testing and
hardening, Darshan installed on
Intrepid

 By default, all applications compiling
with MPI compilers are instrumented

 Data captured from late January
through late March of 2010

 Darshan captured data on 6,480 jobs
(27%) from 39 projects (59%)

 Simultaneously captured data on
servers related to storage utilization

36

Top 10 data producers and/or
consumers shown. Surprisingly, most
“big I/O” users read more data during
simulations than they wrote.

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

Application I/O on ALCF Blue Gene/P

Application Mbytes/s
ec/CN*

Cum. MD Files/Pr
oc

Creates/
Proc

Seq.
 I/O

Mbytes/Pr
oc

EarthScience 0.69 95% 140.67 98.87 65% 1779.48

NuclearPhysics 1.53 55% 1.72 0.63 100% 234.57

Energy1 0.77 31% 0.26 0.16 87% 66.35

Climate 0.31 82% 3.17 2.44 97% 1034.92

Energy2 0.44 3% 0.02 0.01 86% 24.49

Turbulence1 0.54 64% 0.26 0.13 77% 117.92

CombustionPhysics 1.34 67% 6.74 2.73 100% 657.37

Chemistry 0.86 21% 0.20 0.18 42% 321.36

Turbulence2 1.16 81% 0.53 0.03 67% 37.36

Turbulence3 0.58 1% 0.03 0.01 100% 40.40

37

P. Carns et al, “Storage Access Characteristics of Computational Science Applications,” forthcoming.

* Synthetic I/O benchmarks (e.g., IOR) attain 3.93 - 5.75 Mbytes/sec/CN for modest job sizes,
down to approximately 1.59 Mbytes/sec/CN for full-scale runs.

Darshan Summary

 Scalable tools like Darshan can yield useful insight
– Identify characteristics that make applications successful

– Identify problems to address through I/O research

 Petascale performance tools require special considerations
– Target the problem domain carefully to minimize amount of data

– Avoid shared resources

– Use collectives where possible

 For more information:
http://www.mcs.anl.gov/research/projects/darshan

38

S3D Turbulent Combustion Code

 S3D is a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

 Checkpoints consist of four global
arrays

– 2 3-dimensional

– 2 4-dimensional

– 50x50x50 fixed
subarrays

39

Thanks to Jackie Chen (SNL), Ray Grout (SNL),
and Wei-Keng Liao (NWU) for providing the S3D
I/O benchmark, Wei-Keng Liao for providing this
diagram, C. Wang, H. Yu, and K.-L. Ma of UC

Davis for image.

Impact of Optimizations on S3D I/O
 Testing with PnetCDF output to single file, three configurations,

16 processes

– All MPI-IO optimizations (collective buffering and data sieving) disabled

– Independent I/O optimization (data sieving) enabled

– Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

40

Coll. Buffering and
Data Sieving
Disabled

Data Sieving
Enabled

Coll. Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time
per proc (sec)

1426.47 4.82 0.60

Wrapping Up

 We've covered a lot of ground in a short time
– Very low-level, serial interfaces

– High-level, hierarchical file formats

 Storage is a complex hardware/software system

 There is no magic in high performance I/O
– Lots of software is available to support computational science workloads

at scale

– Knowing how things work will lead you to better performance

 Using this software (correctly) can dramatically improve
performance (execution time) and productivity (development time)

41

On-Line References

 netCDF and netCDF-4
– http://www.unidata.ucar.edu/packages/netcdf/

 PnetCDF
– http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/

 HDF5 and HDF5 Tutorial
– http://www.hdfgroup.org/

– http://www.hdfgroup.org/HDF5/

– http://www.hdfgroup.org/HDF5/Tutor

 Darshan I/O Characterization Tool
– http://www.mcs.anl.gov/research/projects/darshan

 Assorted ALCF-Specific suggestions:
– https://wiki.alcf.anl.gov/index.php/I_O_Tuning

42

http://www.mcs.anl.gov/research/projects/darshan
http://www.mcs.anl.gov/research/projects/darshan

